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ROS-mediated amplification of AKT/mTOR
signalling pathway leads to myeloproliferative
syndrome in Foxo3�/� mice

Safak Yalcin1, Dragan Marinkovic1,
Sathish Kumar Mungamuri1, Xin Zhang1,
Wei Tong2, Rani Sellers3 and
Saghi Ghaffari1,4,5,6,*
1Department of Gene and Cell Medicine, Mount Sinai School of
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Reactive oxygen species (ROS) participate in normal

intracellular signalling and in many diseases including

cancer and aging, although the associated mechanisms are

not fully understood. Forkhead Box O (FoxO) 3 transcrip-

tion factor regulates levels of ROS concentrations, and is

essential for maintenance of hematopoietic stem cells.

Here, we show that loss of Foxo3 causes a myeloprolifera-

tive syndrome with splenomegaly and increased hemato-

poietic progenitors (HPs) that are hypersensitive to

cytokines. These mutant HPs contain increased ROS,

overactive intracellular signalling through the AKT/mam-

malian target of rapamycin signalling pathway and rela-

tive deficiency of Lnk, a negative regulator of cytokine

receptor signalling. In vivo treatment with ROS scavenger

N-acetyl-cysteine corrects these biochemical abnormalities

and relieves the myeloproliferation. Moreover, enforced

expression of Lnk by retroviral transfer corrects the ab-

normal expansion of Foxo3�/� HPs in vivo. Our combined

results show that loss of Foxo3 causes increased ROS

accumulation in HPs. In turn, this inhibits Lnk expression

that contributes to exaggerated cytokine responses that

lead to myeloproliferation. Our findings could explain the

mechanisms by which mutations that alter Foxo3 function

induce malignancy. More generally, the work illustrates

how deregulated ROS may contribute to malignant

progression.
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Introduction

Oxidative stress, broadly defined as an imbalance between

generation and detoxification of reactive oxygen species

(ROS), is deleterious to cells and implicated in a number

of degenerative diseases and malignancies (reviewed in

Beckman and Ames, 1998). In addition, excess accumulation

of ROS impacts cellular aging, whereas the ability to resist

oxidative stress is associated with evolutionary conserved

enhanced longevity (Beckman and Ames, 1998). Although

ROS are considered to be toxic byproducts of cellular

metabolism, increasing evidence support the notion that

ROS have a critical role in normal cellular signalling. In

particular, ROS are generated by cytokine signalling and

impact the function of a rapidly expanding list of numerous

effectors (reviewed in Thannickal and Fanburg, 2000). How

these activities affect normal and pathological physiology is

not fully understood.

ROS are particularly deleterious to hematopoietic stem cells,

specifically as they age (Ito et al, 2004; Miyamoto et al, 2007;

Tothova et al, 2007; Yalcin et al, 2008; and reviewed in

Ghaffari, 2008). A tightly controlled balance between hema-

topoietic stem and progenitor cell compartments maintains

normal blood cell homeostasis throughout life. Alterations

of this balance result in various disorders including leukae-

mias or bone marrow failure. For instance, myeloproliferative

disorders are a group of hematopoietic malignancies whose

incidence increase with age, exhibit enhanced proliferation

and survival of one or more myeloid lineage cells that arises

from an unbalanced expansion of hematopoietic myeloid

progenitor cells (Tefferi and Gilliland, 2007).

The Forkhead FoxO family of transcription factors are

critical regulators of oxidative stress and exert this function

at least partly by upregulating the expression of several anti-

oxidant enzymes (Kops et al, 2002; Nemoto and Finkel, 2002;

Murphy et al, 2003; Marinkovic et al, 2007; Tothova et al,

2007; Yalcin et al, 2008). FoxO1, FoxO3 and FoxO4 are wildly

expressed while FoxO6 is predominantly expressed in neuro-

nal tissues. Loss of a single FoxO leads to distinct phenotypes

in mice, underscoring their diverse non-redundant functions

in vivo (Castrillon et al, 2003; Hosaka et al, 2004). In

particular, female Foxo3-deficient mice exhibit a premature

infertility associated with ovarian follicle depletion early on

in life (Castrillon et al, 2003; Hosaka et al, 2004). In addition,

both Foxo3�/� hematopoietic stem and erythroid cell

compartments exhibit enhanced susceptibility to oxidative

stress (Marinkovic et al, 2007; Miyamoto et al, 2007; Yalcin

et al, 2008).

FoxOs also regulate cellular responses to genotoxic stress,

consistent with a tumour suppressor function (Paik et al,

2007). In response to stress such as DNA damage or oxidative

stress, FoxOs induce cell cycle arrest, repair damaged DNA or

initiate apoptosis by modulating genes that control these

processes (Brunet et al, 1999; Dijkers et al, 2000; Medema
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et al, 2000; Nakamura et al, 2000; Tran et al, 2002; Alvarez

et al, 2003; Ghaffari et al, 2003; Marinkovic et al, 2007; Yalcin

et al, 2008). FoxO genes are also found at chromosomal

breakpoints in certain cancers, including acute myeloid

leukaemias (FoxO3 and FoxO4) (Borkhardt et al, 1997;

Hillion et al, 1997). Moreover, FoxO3 regulates the expression

and activity of ataxia telangiectasia-mutated protein kinase,

suggesting an important role in the maintenance of genomic

stability (Tsai et al, 2008; Yalcin et al, 2008).

Function of FoxO is restrained primarily by the phosphoi-

nositide-3-kinase (PI3-kinase)/AKTsignalling pathway (Biggs

et al, 1999; Brunet et al, 1999; Dijkers et al, 2000; Kashii et al,

2000; Nakae et al, 1999; Rena et al, 1999; Tang et al, 1999;

and reviewed in Greer and Brunet, 2008). The AKT serine

threonine protein kinase regulates a wide range of metabolic

processes through phosphorylation of numerous effectors,

including FoxO and mammalian target of rapamycin (mTOR)

(Gingras et al, 1998; Brunet et al, 1999; Inoki et al, 2002;

Manning et al, 2002) a kinase that stimulates cell growth and

proliferation through multiple effectors including ribosomal

S6 kinase (S6K1) and the eukaryotic initiation factor 4E-

binding protein.

In response to cytokines, growth factors or oncoproteins,

activated AKT kinase directly phosphorylates FoxO on three

conserved residues, resulting in their nuclear exclusion and

subsequent degradation (Biggs et al, 1999; Brunet et al, 1999;

Matsuzaki et al, 2003; Plas and Thompson, 2003; Hu et al,

2004). In contrast, stress stimuli, or inhibition of PI3-kinase/

AKT signalling pathway by growth factor/cytokine withdra-

wal, induce FoxO’s nuclear localization, thereby enhancing

their transcriptional activity (Essers et al, 2004; Lehtinen

et al, 2006; van der Horst et al, 2006). The PI3-kinase/AKT

signalling pathway is activated in numerous human and

animal malignancies, although how this contributes to the

pathogenesis of these diseases is not entirely clear (Ugo et al,

2004; Bellacosa et al, 2005; Dai et al, 2005; Yilmaz et al, 2006;

Zhang et al, 2006). In addition to AKT, a number of kinases

regulate the activity of FoxO both positively and negatively.

In addition to phosphorylation, FoxO proteins are subject

of several other post-translational modifications such as

acetylation, methylation and ubiquitination whose combined

integrated signals determine the activity of FoxOs.

Recent findings have established a critical function for

FoxO family members in the regulation of normal and

malignant hematopoietic stem cell activity (Miyamoto et al,

2007; Tothova et al, 2007; Yalcin et al, 2008; Naka et al, 2010).

In particular, Foxo3’s suppression of ROS is essential for the

maintenance of hematopoietic stem cell quiescence and

homeostasis (Miyamoto et al, 2007; Yalcin et al, 2008). In

addition, abnormal repression of Foxo3 has been implicated

in the pathogenesis of myeloproliferative disorders and other

haematological malignancies (Ghaffari et al, 2003; Komatsu

et al, 2003; Fernandez de Mattos et al, 2004; Essafi et al,

2005). Despite these findings, of the entire scope of Foxo3

functions, regulation of hematopoietic progenitors (HPs) is

not fully defined (Miyamoto et al, 2007; Yalcin et al, 2008).

Here, we show that loss of Foxo3 results in a myeloproli-

ferative syndrome in mice. We further demonstrate that

increased ROS accumulation in Foxo3�/� primitive myeloid

progenitors activates the cytokine-induced AKT/mTOR

signalling pathway and expands Foxo3-deficient primitive

myeloid progenitors. Accordingly, this myeloproliferative

syndrome is ameliorated by systemic administration of ROS

scavengers. Moreover, Lnk (SH2B3), a negative regulator of

cytokine signalling, is directly implicated in this process. Our

combined data indicate that Foxo3 modulates HP homeo-

stasis by controlling cytokine-dependent production of, and

response to, ROS. These cumulative findings illustrate new

mechanisms through which deregulated ROS could contri-

bute to the development of malignancies.

Results

Foxo3�/� mice exhibit a myeloproliferative syndrome

Foxo3�/� mice display increased white blood cell counts,

with an increased circulating neutrophils (Po0.03) and

monocytes (Po0.01), and a concomitant reduction of circu-

lating lymphocytes (Po0.005) and red blood cells (Table I;

Marinkovic et al, 2007). These anomalies of the peripheral

blood are associated with myeloproliferative syndrome

(Figure 1). Foxo3-deficient mice exhibit an enlarged spleen

(Figure 1A), increased number of splenocytes (Figure 1B)

and extramedullary hematopoiesis (Figure 1C, D and E,

Supplementary Figure 1A), with increased frequency of

erythrocytic and granulocytic lineages (Supplementary

Figure 1). Concomitantly, the bone marrow is hypocellular

(Figure 1B) with decreased production of mature B and

erythroid cells (Figure 1D; Supplementary Figure 1;

Marinkovic et al, 2007). Histopathology analysis corrobo-

rated these findings, showing increased extramedullary

hematopoiesis containing erythroid and myeloid cells in

the spleen and liver of Foxo3�/� mice (Figure 1A and

Supplementary Figure 2).

In agreement with a myeloproliferative syndrome, the

myeloid progenitor compartment is significantly enhanced

in the bone marrow, spleen and peripheral blood of Foxo3-

deficient mice (Figure 2A and Supplementary Figure 3).

In particular, myeloid colony-forming unit-granulocyte-

macrophage-derived colonies are increased in numbers and

size (Supplementary Figure 3 and data not shown).

Similarly, the size of primitive myeloid progenitor pool

was enhanced in Foxo3�/� bone marrow (Figure 2B). The

compartment of colony-forming-spleen day 12 (CFU-Sd12)-

derived colonies was also increased (Po0.002; Figure 2C),

further supporting an expansion of the early myeloid pro-

genitors. In addition, Foxo3�/� HP cells were overly sensitive

to cytokines (Figure 2D) and generated significantly larger-

size colonies in vitro (Supplementary Figure 3 and data not

shown), which are the hallmarks of myeloproliferative

disorders (Ghaffari et al, 1999; Levine and Gilliland, 2008).

Table I Comparison of blood parameters of Foxo3+/+ and
Foxo3�/� mice

Parameters Foxo3+/+ Foxo3�/� P-value

WBC (� 1000/ml) 9.45±1.13 13.48±1.16 0.01
Neutrophils (%) 8.98±1.66 13.80±1.76 0.03
Lymphocytes (%) 83.69±1.98 75.55±2.09 0.005
Monocytes (%) 2.98±0.58 6.87±1.59 0.01
Eosinophils (%) 2.70±0.25 2.33±0,39 0.21
Basophils (%) 1.34±0.32 0.95±0.09 0.14

Results for wild type (n¼ 10) and Foxo3�/� (n¼ 21) blood are
shown as mean±s.e.m. The analyses are from at least three
independent experiments.

Foxo3�/� myeloproliferation by ROS via AKT/mTOR
S Yalcin et al
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These data suggest that Foxo3 suppresses HP production and

proliferation by inhibiting cytokine signalling. These findings

were surprising, as Foxo3�/� hematopoietic stem cells are not

highly cycling in vivo and do not generate excessive number

of HPs in culture (Yalcin et al, 2008), suggesting that these

observations were not simply the result of a highly prolifera-

tive hematopoietic stem cell compartment in Foxo3�/� mice.

ROS-mediated amplification of AKT/mTOR signalling

pathway enhances primitive HP compartment in

Foxo3�/� mice

Foxo3 suppresses ROS in many cell types, including in

hematopoietic cells, by regulating a programme of anti-oxi-

dant gene expression (Kops et al, 1999; Nemoto and Finkel,

2002; Marinkovic et al, 2007; Miyamoto et al, 2007; Yalcin

et al, 2008). Accordingly, Foxo3-mutant lineage-negative

bone marrow cells exhibited reduced expression of several

anti-oxidant enzyme genes (Supplementary Figure 4). In

addition, ROS were significantly overaccumulated in different

Foxo3�/� subpopulations of lineage-negative cells enriched

for myeloid progenitors (Figure 3 and Supplementary Figure

5). ROS concentrations were highly enhanced (approximately

1.6-fold, Po0.02; Figure 3) in Foxo3�/� Lin� IL7Ra� Sca-1�

c-Kitþ cells, a population that encompasses all myeloid

progenitors (Akashi et al, 2000), and increased significantly

in freshly isolated Foxo3�/� common myeloid progenitors

(CMP), as compared with their wild-type counterparts (ap-

proximately 1.2-fold, Po0.03; Supplementary Figure 5). CMP

is a highly pure population of hematopoietic cells giving rise

to megakaryocyte/erythrocyte and granulocyte/monocyte

progenitors (Akashi et al, 2000). Similar results were ob-

tained from analysis of ROS accumulation in total Foxo3-

deficient bone marrow depleted from lineage-restricted cells

(data not shown). In vivo treatment of mice with ROS

scavenger N-acetyl-cysteine (NAC, 100 mg/kg), normalized

the levels of ROS in Foxo3�/� Lin� IL7Ra� Sca-1� c-Kitþ cell

population (Figure 3), supporting the specificity of ROS

measurement. Interestingly, these experiments revealed

two distinct populations of ROS-containing cells (ROS-high

or ROS-hi and ROS-low) in primitive myeloid progenitors of

both wild-type and Foxo3�/� origin. The significant increase

of ROS observed in Foxo3�/� Lin� IL7Ra� Sca-1� c-Kitþ cell

population was entirely in ROS-hi fraction (Figure 3). This

ROS-hi subpopulation may be the one that elicits cellular

responses, such as increased cell cycle or apoptosis, to

oxidative stress in primitive myeloid progenitors.

To investigate the mechanisms of enhanced myeloproli-

feration caused by loss of Foxo3, we interrogated cytokine-

mediated activation of principal signalling pathways in

bone-marrow-derived HPs. Freshly isolated bone marrow

cells were depleted of mature lineages by immunoselection

(Lin� cells), and subjected to cytokine starvation followed by
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Figure 1 Myeloproliferative-like syndrome in Foxo3�/�mice. (A) Representative whole-mount (upper panels) and histological sections (lower
panels) of spleens from 11-week-old wild-type (þ /þ ) and Foxo3�/� (�/�) mice. Increased extramedullary myeloid hematopoiesis in the red
pulp and minimal depletion of marginal zone lymphocytes with the retention of the T-cell regions in Foxo3�/� spleen, as compared with the
wild-type are shown. (B) Total number of bone marrow (n¼ 32) and spleen cells (n¼ 12) is shown, Student’s t-test. (C) Representative FACS
plots of FSC versus SSC of bone marrow, spleen and blood of wild-type and Foxo3�/� mice are shown. Percentages of FSChighSSChigh

(granulocytic) cells are marked. (D) Total number of bone marrow cells in each lineage is plotted. Total number of bone marrow erythroid (TER
119, n¼ 11), B (B220, n¼ 14) and Tcells (CD3, n¼ 11) and neutrophils (Gr-1/Mac-1, n¼ 11) is shown. (E) Total number of cells in each lineage
of the spleen, TER 119 (n¼ 8), B220 (n¼ 8), CD3 (n¼ 11) and Gr-1/Mac-1 (n¼ 11) (Student’s t-test). The analyses are from at least four
independent experiments.
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stimulation with interleukin-3 (IL-3). Myeloid progenitors

constitute a significant majority of Lin� cells expressing IL-3

receptor at the steady state. To our surprise, IL-3 stimulation

of Foxo3�/� Lin� cells led to hyperphosphorylation of AKT,

mTOR and mTOR substrate S6K1 (Figure 4A). In contrast,

STAT5 proteins, another effector of IL3 signalling, were not

affected in these cells (Figure 4A). Similar results showing

specific hyperactivation of the AKT/mTOR pathway in

Foxo3�/� cells were obtained with other cytokines such

as erythropoietin (Epo, data not shown). In agreement with

in vivo overactivation of AKT/mTOR signalling pathway

mediating enhanced generation of early myeloid progenitors

in Foxo3�/� mice, in vivo administration of the mTOR

inhibitor rapamycin resulted in significant reduction of

Foxo3�/�-derived CFU-Sd12, as compared with controls in

lethally irradiated hosts (Figure 4B).

Normal cytokine signalling, including signalling by IL-3

(Sattler et al, 1999), is mediated in part by ROS in in vitro

cultured cells (Thannickal and Fanburg, 2000; Finkel, 2003).

Thus, we investigated whether abnormal increase of ROS

contributes to the hyperactivation of AKT/mTOR signalling

pathway caused by loss of Foxo3 in primary cells in vivo. We

treated mice with the ROS scavenger NAC (100 mg/kg), and

tested IL-3 signalling responses by examining phosphoryla-

tion of downstream targets AKT, mTOR and S6K1

(Figure 4A). In vivo treatment with NAC specifically reduced

the intensity of IL-3-mediated phosphorylation of AKT and

mTOR in Foxo3-mutant cells enriched for HPs. Surprisingly,

reduction in phospho-mTOR in response to NAC did not

impact phosphorylation of the mTOR target S6K1 in Foxo3

mutants, as compared with normal hematopoietic cells

(Figure 4A). Although the mechanism of lack of pS6K1
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c-Kitþ cells within Lin� IL7Ra�-gated cells is shown (the frequency of Lin� IL7Ra� Sca-1� c-Kitþ cells within bone marrow is 1.3±0.11% for
wild type and 2.2±0.2% for Foxo3�/�). One representative of three independent experiments is shown. (C) CFU-S-derived colonies formed in
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Figure 3 Enhanced ROS accumulation in Foxo3�/� primitive mye-
loid progenitors. Representative FACS profile of bone marrow Lin�

IL7Ra� Sca-1� c-Kitþ that contain 98% of all myeloid progenitor
cells (Akashi et al, 2000) (left panel). Frequency of c-Kitþ Sca1�

cells within Lin� IL7Ra� cells is shown. Endogenous ROS concen-
trations were measured in freshly isolated Lin� IL7Ra� Sca-1�

c-Kitþ cells (right panel) from wild-type or Foxo3�/� mice treated
daily in vivo with NAC (100 mg/kg) or PBS for 15 days; fold change
in mean fluorescence intensity (MFI) of ROS in gated subpopula-
tions (ROS-hi using - - - - - - - gate), as compared with control
wild-type cells treated with PBS is shown as mean±s.e.m., n¼ 3;
Student’s t-test. One of two independent experiments is shown.
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response to NAC in Foxo3-mutant cells is not clear, it is

possible that the residual pmTOR kinase activity, despite

the presence of NAC (Figure 4A, lanes 11 and 12), is sufficient

for phosphorylation of S6K1 to the same extent as controls,

especially if the activity of a phospho-S6K1-specific phospha-

tase is reduced in Foxo3�/� cells. NAC treatment did not alter

STAT5 activity, as determined by phosphorylation on tyrosine

694 or serine 726 (Figure 4A).

Interestingly, NAC treatment specifically attenuated IL-3-

mediated phosphorylation of AKT and S6K1 in wild-type HPs

(Figure 4A), suggesting that ROS participate in specific

cytokine signalling pathways in primary bone marrow cells

in vivo. Next, we asked whether this data remains valid in

populations of lineage-negative bone marrow cells that

contain all myeloid but not lymphoid progenitors. We

found that AKT was hyperphosphorylated in response to

IL-3 in Foxo3�/� myeloid (Lin� IL7Ra� Sca-1� c-Kitþ ) pro-

genitors, as measured by flow cytometric analysis of intra-

cellular pAKT (Figure 4C). NAC treatment reduced pAKT

significantly in this highly enriched population of myeloid

progenitors, in both wild-type and Foxo3�/� mice (Figure 4C,

Supplementary Figure 6). As anticipated, in vivo treatment

with NAC reduced ROS concentrations significantly in

Foxo3�/� Lin� IL7Ra� Sca-1� c-Kitþ bone marrow cells

(Figure 4C, right panel).

Importantly, and in agreement with the results above,

in vivo administration of NAC normalized the number and

the size of multipotential Foxo3�/�-derived CFU-Sd12 in leth-

ally irradiated hosts without any significant impact on wild-

type CFU-Sd12 (Po0.0003, n¼ 5; Figure 5). Taken together,

these results indicate that ROS specifically amplify cytokine-

mediated AKT/mTOR signalling pathway to stimulate the

expansion of HPs in Foxo3�/� mice.

To investigate whether accumulation of ROS in myeloid

progenitors contributes to the pathogenesis of the myelopro-

liferative syndrome, we subjected wild-type and Foxo3-

deficient mice to a short, 15-day treatment with NAC.

Interestingly, in vivo NAC administration treated some of

the myeloproliferative symptoms in Foxo3-deficient mice

(Figure 6, Supplementary Figure 6). The in vivo treatment

with NAC normalized the total number of bone marrow and

spleen cells in Foxo3�/� mice (Figure 6A). This treatment
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Figure 4 mTOR mediates the enhancement of Foxo3�/� hematopoietic progenitor cell compartment. (A) Western blot analysis of phosphor-
ylation of signalling proteins in lineage-negative bone marrow cells isolated from wild-type and Foxo3�/�mice (n¼ 4). Mice were administered
daily with NAC (100 mg/kg) or PBS in vivo for 3 days, after which lineage-negative cells were isolated, serum- and cytokine starved for 2 h and
stimulated with IL-3 (20 ng/ml) for the indicated time points (0, 10 and 30 min) in vitro in the absence or presence of NAC (100mM) before
preparing the whole cell extract; representative immunoblot of three independent experiments is shown. (B) Number of CFU-Sd12-derived
colonies formed in the spleens of lethally irradiated mice reconstituted with 105 wild-type or Foxo3�/� bone marrow cells detected after 12 days
during which mice were administered either rapamycin (Rapa; 4 mg/kg) or vehicle (Veh) intraperitoneally for 5 days a week. Results shown are
mean±s.e.m. (n¼ 5 in each group, Student’s t-test). One representative of three independent experiments is shown. Representative spleen
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also had a specific and significant effect on the frequency and

total number of immature myeloid (Mac-1/Gr-1 positive)

cells in the bone marrow without any impact on B cells

(Figure 6B and Supplementary Figure 6).

To identify the mechanism by which ROS regulate the

myeloproliferative syndrome, we asked whether ROS impact

the proliferation or apoptosis rate of Foxo3�/� myeloid

progenitor cells. Thus, mice were treated in vivo with NAC

and the rate of 5-bromo-2-deoxyuridine (BrdU) incorporation

in Lin� IL7Ra� Sca-1� c-Kitþ cells was measured. We found

that Foxo3�/� myeloid progenitors exhibit a highly and

significantly increased proliferation, as compared with their

wild-type counterparts (Figure 6C, top panel). This was not

accompanied by any modification of their apoptotic rate

(Figure 6C, bottom panel). NAC treatment significantly re-

duced the percentage of cycling Foxo3-deficient myeloid

progenitor cells (Figure 6C, top panel), without having

any effect on their apoptotic rate (Figure 6C, bottom panel).

ROS regulation of proliferation of Foxo3�/� primitive myeloid

progenitor cells is in accord with our earlier findings of

ROS-induced amplification of AKT/mTOR signalling pathway
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Figure 6 NAC treatment ameliorates myeloproliferative syndrome in Foxo3�/� mice in vivo. (A) Mice were treated daily with NAC (100 mg/
kg) or PBS and their total number in the bone marrow and spleen was measured after 15 days (n¼ 3 in each group). (B) Frequency of myeloid
(Mac-1 and Gr-1 positive) and B (B220 positive) cells in the bone marrow of mice from A (n¼ 3 in each group). (C) Percentage of BrdU- (upper)
and annexin-V-binding positive (lower) cells in wild-type and Foxo3�/� Lin� IL7Ra� Sca-1� c-Kitþ cells was analysed by flow cytometry after
15 days in vivo of NAC (100 mg/kg) or PBS treatment of mice from A (n¼ 3 in each group). (D) Wild-type or Foxo3�/� mice were treated daily
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in these cells (Figure 4). We further asked whether pretreat-

ment with NAC is sufficient to normalize the activity of

Foxo3�/� primitive HPs in transplanted hosts in vivo. As

shown in Figure 6D, pretreatment of Foxo3�/� mice with

NAC significantly decreased the number of multipotential

CFU-Sd12-derived colonies formed in the spleen of lethally

irradiated hosts (upper panel and lower left panel), likely

through reduction of the levels of ROS in primitive myeloid

progenitors (Figure 6D, bottom right panel). These results

strongly suggest that the myeloproliferation in Foxo3�/�mice

is mediated by ROS and is sensitive to NAC. Altogether, these

results indicate that the treatment with ROS scavenger NAC

improves, at least partially, the myeloproliferative phenotype

of Foxo3�/� mice.

Lnk, a negative regulator of cytokine signalling, is

directly implicated in enhanced Foxo3�/� primitive

HP cell activity

To further examine how Foxo3 regulates HP expansion, we

used real-time QRT–PCR to compare the expression of nu-

merous regulators of cytokine signalling in lineage-depleted

(Lin�) cells from WT and Foxo3�/� bone marrow. The

function of some of negative regulators is known to be

modulated by ROS (Thannickal and Fanburg, 2000); thus,

we initially focused on negative regulators. The expression of

most negative regulators of cytokine signalling was not

significantly affected by loss of Foxo3. These include protein

tyrosine phosphatase (SHP1, PTPN6) a negative regulator of

JAK2 signalling, suppressor of cytokine signalling 1, which

negatively regulates STATs, and PTEN, a negative regulator

of PI3-kinase/AKT signalling (Figure 7A). However, the

expression of SH2-containing inositol-5-phosphatase (SHIP),

another negative regulator of PI3-kinase signalling, was sig-

nificantly reduced. In addition, the expression of the adaptor

protein Lnk (SH2B3), a negative regulator of cytokine signal-

ling (Takaki et al, 2002; Velazquez et al, 2002; Tong and

Lodish, 2004; Tong et al, 2005), was significantly down-

regulated in Foxo3�/� lineage-negative progenitors, as deter-

mined by QRT–PCR (Figure 7A) and confirmed by western

blot analysis (Figure 7B). Altered Lnk expression is due

to loss of Foxo3, as overexpression of Foxo3 in primitive

bone marrow cells significantly enhanced Lnk expression

(Figure 7C). Lnk (SH2B3) belongs to a family of SH2-containing

adaptor proteins, which also includes SH2-B1 and APS

(SH2B2) (Rudd, 2001). Expression of SH2-B1, which is a

positive regulator of cytokine signalling, was significantly

increased in Foxo3-mutant cells (Figure 7A). Thus, deregula-

tion of Lnk and SH2-B1 could contribute to the enhanced

cytokine responses observed in Foxo3�/� progenitors.

Lnk-deficient mice exhibit a myeloproliferative-like dis-

order similar to what we observe here with loss of Foxo3

(Takaki et al, 2002; Velazquez et al, 2002). Thus, we asked

whether decreased expression of Lnk contributes to the

myeloproliferation observed in Foxo3-mutant mice. To

address this, mice were treated with high-dose 5-fluorouracil

(5-FU), which ablates proliferating hematopoietic cells (Suda

et al, 1983; Lemieux et al, 1995), and populations of bone

marrow mononuclear cells highly enriched for primitive

hematopoietic stem and progenitors were isolated and trans-

duced with the bicistronic retroviral vector MSCV-IRES-GFP
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(MIG) alone or with MIG encoding for Lnk (MIG-Lnk). Forced

expression of Lnk (Figure 8A) was confirmed in an aliquot

of transduced GFP-positive wild-type or Foxo3�/� primitive

hematopoietic cells (Figure 8B). Retrovirally transduced cells

from Figure 8A and B were injected into lethally irradiated

hosts and CFU-Sd12 were measured after 12 days. Ectopic

expression of Lnk in contrast to vector control normalized the

number of CFU-Sd12 derived from Foxo3-mutant mice de-

tected in lethally irradiated hosts (Figure 8C), indicating that

the relative loss of Lnk contributes to the overactivation of

the CFU-Sd12 compartment in Foxo3�/� mice. This is likely

by constraining cytokine-mediated hyperactivation of AKT/

mTOR signalling pathway, as ectopic expression of Lnk, but

not of vector control, in primitive Foxo3�/� hematopoietic

cells reduced the phosphorylation of AKT, mTOR and the

S6K1-substrate S6 ribosomal protein in these cells in response

to IL-3 (Figure 8D, Supplementary Figure 7).

Foxo3 could regulate Lnk expression through a number of

different mechanisms. We could not detect any consensus

FoxO binding site in regulatory regions of mouse Lnk gene

that is conserved among mammals, suggesting the absence of

direct transcriptional effects. Therefore, we investigated

whether elevated ROS concentrations inhibit Lnk gene

expression. Thus, mice were treated with NAC (100 mg/kg)

or PBS for 3 days in vivo, and bone marrow myeloid

progenitors (Lin� IL7Ra� Sca-1� c-Kitþ ) were analysed for

Lnk expression. NAC treatment significantly increased the

expression of Lnk mRNA in Foxo3�/� myeloid progenitors,

without having any impact on the expression levels of

SHIP or SHP1 (Figure 9A). In addition treatment with

NAC did not affect the expression of Lnk in wild-type cells.

This was confirmed by western blot analysis of Lnk

(Figure 9B). Consistent with these results, in vitro treatment

of bone marrow cells with hydrogen peroxide reduced Lnk
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expression, although this effect was dependent on H2O2

concentration (Supplementary Figure 8). Given ROS-

mediated activation of mTOR signalling (Figure 4), the effect

of ROS on Lnk (Figure 9A, B and Supplementary Figure 8)

and the impact of Lnk on AKT/mTOR signalling (Figure 8D

and Supplementary Figure 7), we asked whether mTOR

signalling has any impact on the expression of Lnk. As

shown in Figure 9C, rapamycin treatment increased Lnk

expression in bone marrow cells to some extent, suggesting

that mTOR signalling participates in the regulation of Lnk

expression. The mTOR regulation of Lnk expression might be

through its control of ROS (Supplementary Figure 9). These

results suggest that intracellular ROS concentrations are

critical for the regulation of expression of the negative

regulator of cytokine signalling Lnk.

Discussion

Excessive ROS concentrations lead to abnormal proliferation,

growth and malignancies (Neumann et al, 2003; Ito et al,

2004). Here, we have identified deregulation of sensitivity of

cellular signalling to physiological ROS as an additional

mechanism by which ROS compromise normal growth and

lead to malignancies. Our key finding is that overaccumu-

lated ROS in Foxo3�/� mice exert a critical role in expansion

of primitive HP cell compartment and the regulation of

myeloproliferation in these mice. We have shown that

Foxo3�/� mice display a myeloproliferative syndrome char-

acterized by splenomegaly, abnormal enhanced production of

primitive HPs in hematopoietic organs, extramedullary he-

matopoiesis, high sensitivity of HPs to cytokines and signifi-

cant increase in the production of white blood cells. This

phenotype is reminiscent of myeloproliferative disorders and

suggests that Foxo3 has a role in these diseases. In addition,

sensitivity of the Foxo3�/� myeloproliferative phenotype to

ROS scavenger NAC suggests that this compound may have

some effect in myeloproliferative diseases in general.

Overaccumulation of ROS is the principal mediator of

the amplification of Foxo3�/� primitive HP pool, as ROS

scavenger NAC normalized the number of Foxo3�/�-derived

CFU-Sd12 and the cycling of Foxo3�/� primitive myeloid

progenitors, and ameliorated the myeloproliferative syndrome

phenotype of Foxo3�/� mice (Figures 3–6). One could
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hypothesize that potential DNA damage in ROS-hi subpopu-

lation (Figure 3) of Foxo3�/� Lin� IL7Ra� Sca-1� c-Kitþ cells

may contribute to acquisition of growth-enhancing mutations

in this cell population, leading to malignant progression.

Our results suggest that ROS regulation of Lnk is an

integral part of balancing cytokine receptor signalling by

regulating their sensitivity to various modulations of physio-

logical ROS. Relative decrease of Lnk expression as a result of

loss of Foxo3 leads to enhanced AKT/mTOR signalling path-

way, increased cycling and expansion of Foxo3-mutant HP

cells (Figure 8D and Supplementary Figure 7). Several recent

reports establish a strong link between alteration of Lnk

expression and myeloproliferative syndromes in mouse and

man (Baran-Marszak et al, 2010; Bersenev et al, 2010; Oh

et al, 2010), further highlighting the potential importance of

ROS regulation of Lnk signalling pathway in understanding

the underlying mechanism of myeloproliferative syndromes.

ROS are generated by oncoproteins and several cytokine

and growth factor stimuli (Sundaresan et al, 1995;

Thannickal and Fanburg, 1995; Irani et al, 1997; Sattler

et al, 1999, 2000; Vafa et al, 2002; Zhu et al, 2006).

Although the exact mechanism of generation of ROS by

cytokine receptor signalling in non-phagocytic cells is not

known, it is believed that by modifying the function of many

signalling proteins, ROS participate in normal cellular signal-

ling and regulate cell proliferation (reviewed in Thannickal

and Fanburg, 2000; Ghaffari, 2008). Here, we have shown

that, in addition to its known targets such as tyrosine

phosphatase 1B (PTPB1, PTPN1) and PTEN (Hecht and

Zick, 1992; Barford et al, 1994; Barrett et al, 1999a, 1999b;

Meng et al, 2002, 2004; Savitsky and Finkel, 2002; Finkel,

2003; Seo et al, 2005), ROS regulate the expression of the

adaptor protein Lnk. While ROS regulated the activity of

these phosphatases, ROS control Lnk through modulation

of expression of its transcript. Although the exact mechanism

of this control is not known, ROS are known to modulate

the expression and activity of several transcription factors

including the AP1 complex (Thannickal and Fanburg, 2000).

Lnk regulatory regions contain several evolutionarily con-

served AP1 sites, suggesting that ROS might regulate Lnk

expression through modulation of AP1 activity.

Interestingly, it was reported recently, while this paper was

under preparation, that in Drosophila, Lnk negatively regu-

lates lifespan via control of oxidative stress (Slack et al, 2010).

In addition, these studies suggested that dFoxo represses Lnk

expression directly. These findings are consistent with our

results here, given that Lnk functions as a positive regulator

of insulin receptor signalling and PI3-kinase in Drosophila,

in contrast to its roles in mammals (Werz et al, 2009).

The high sensitivity of AKT and mTOR phosphorylation

(Figure 4) in Foxo3�/� myeloid progenitor compartment to

the administration of anti-oxidants (Figures 5–6) suggests

that the expansion of this population is by AKT/

mTOR amplification and is mediated by ROS. ROS-mediated

amplification of mTOR signalling pathway is consistent

with the redox modulation of the interaction of mTOR with

its regulator raptor (Sarbassov and Sabatini, 2005) and

its repression of oxidative stress in hematopoietic cells

(Chen et al, 2008). Collectively, these findings strongly

suggest that loss of Foxo3 amplifies ROS-mediated cytokine

signalling, in particular AKT/mTOR signalling pathway,

in primitive myeloid progenitor cells in vivo. Importantly,

the short period of anti-oxidant treatments in all these

experiments (Figures 4–6, 8) strongly suggests that a hemato-

poietic stem cell effect is unlikely.

AKT protein kinases are frequently activated in a broad

array of tumours, including haematological malignancies

(reviewed in Bellacosa et al, 2005; Bhaskar and Hay, 2007;

Manning and Cantley, 2007). Here, we found a specific over-

activation of AKT/mTOR signalling in response to cytokines

that contributes significantly to the enhanced generation

of primitive myeloid progenitors in Foxo3-deficient mice

(Figures 3–6). In contrast to the overactivation of AKT/

mTOR signalling, we did not detect any significant increase

in phosphorylation of STAT5 (Ser 726 or Tyr 694), another

major target of cytokine signalling, in response to cytokines

in Foxo3-mutant cells (Figure 4A). One potential explanation

might be that STAT5 follows a distinct phosphorylation

kinetic in wild-type lineage-negative bone marrow cells, as

compared with AKT or mTOR.

The phenotype in Foxo3�/� mice resembles human

myeloproliferative disorders that include chronic myeloid

leukemia (CML), polycythemia vera, essential thrombocythemia

and primary myelofibrosis. Constitutive suppression of Foxo3

is critical for growth and survival of cells transformed by

BCR-ABL, the key mediator of CML pathogenesis (Ghaffari

et al, 2003; Komatsu et al, 2003). Our present findings

support the notion that constitutive suppression of Foxo3

activity by oncoproteins in myeloproliferative disorders such

as by BCR-ABL in CML (Ghaffari et al, 2003; Komatsu et al,

2003; Naka et al, 2010) or, potentially, by JAK2V617F in

polycythemia vera, may be a significant contributor to the

pathogenesis of these disorders. In addition, our results in

Foxo3-deficient mice recapitulate the myeloproliferative phe-

notype of the triple Foxo-deficient mice (Tothova et al, 2007).

Together, these findings indicate that Foxo3 is the principal

FoxO operating in hematopoietic stem, as we and others have

previously reported (Miyamoto et al, 2007, 2008; Yalcin et al,

2008), and in progenitor cells, as shown in this study, and

have an essential non-redundant function in hematopoietic

homoeostasis. In agreement with this, Foxo3 was recently

shown to be critical for the maintenance of leukaemic stem

cells in CML (Naka et al, 2010). Despite similarities in our

findings, there are few distinctions between our results and

that of Miyamoto et al (2007) on Foxo3 regulation of

hematopoietic stem and progenitor cells, including lack of

Foxo3�/� myeloproliferation in Miyamoto et al’s report.

These discrepancies are likely due to distinct mouse strains

used. As previously reported (Dejean et al, 2009), loss of

Foxo3 did not lead to lymphoproliferation at the steady state

(Table I, Figure 1 and Supplementary Figures 1 and 10),

suggesting that the lymphoproliferative phenotype observed

in Foxo3 gene-trap mice (Lin et al, 2004) might be due to the

strategy or, as has been previously suggested (Dejean et al,

2009) to the mixed strain used to generate these mice.

On the basis of these results, we propose a working model

that postulates that, in contrast to hematopoietic stem cells in

which Foxo3 is constitutively active (Yamazaki et al, 2006;

Yalcin et al, 2008), in HPs transcriptional activity and nuclear

localization of Foxo3 are modulated by cytokine signalling

and ROS. In turn, Foxo3 balances the regulation of cytokine

signalling and ROS (see Figure 10). This model projects that

ROS amplification of cytokine signalling participates in the

activation of HP cells, producing more ROS that will mobilize
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Foxo3 to the nucleus once accumulated above a certain

threshold. Indeed, it is known that ROS accumulation stimu-

lates nuclear localization of FoxO via activation of multiple

kinases (Greer and Brunet, 2008). Thus, according to this

model, nuclear Foxo3 will in turn suppress ROS and/or

induce apoptosis/cell cycle arrest in the progenitor popula-

tion to maintain hematopoietic homeostasis.

Our combined results indicate that abnormal expression of

Lnk coupled with accumulation of ROS leads to amplified

cytokine signalling, in particular AKT/mTOR signalling path-

way, and altered hematopoietic homeostasis in Foxo3�/�

mice. Thus, modulations of ROS accumulation significantly

amplify alterations of cytokine signalling and may lead to

malignancies. These findings may be critical in understand-

ing the role of anti-oxidant pathways in promoting

malignancies and cellular aging.

Materials and methods

Mice
The generation and genotyping of mice were performed as
previously described (Castrillon et al, 2003). Progenies, aged 8–12
weeks, of Foxo3þ /� mice (129� FBV/n) backcrossed to FVB/n
were intercrossed with littermates to generate the experimental
cohort (F6). In transplantation experiments, Foxo3þ /� mice
backcrossed 10 generations onto C57BL6 were used. Wild-type
littermates were used as controls in all experiments. Protocols were
approved by the Institutional Animal Care and Use Committee of
Mount Sinai School of Medicine.

Cells
Blood samples were collected and lineage-negative cells were
separated using a mouse progenitor cell enrichment kit (StemCell
Technologies, Canada), as previously described (Marinkovic et al,
2007; Yalcin et al, 2008). Bone marrow mononuclear cells were
isolated using lympholyte M density separation medium according
to manufacturer’s protocol (Cederlane, Hornby, Ontario, Canada).

In vitro clonogenic progenitor assay
Myeloid clonogenic assays were performed as previously described
(Ghaffari et al, 2006; Zhao et al, 2006; Yalcin et al, 2008). Cells
(5�106 peripheral blood, 5�105 spleen and 3�104 bone marrow
cells) were cultured in MethoCult 3234 (StemCell Technologies)

containing 50 ng/ml rat stem cell factor (SCF), 10 ng/ml IL6,
10 ng/ml IL3 and 3 U/ml Epo (all from PeproTech EC, Rocky Hill,
NJ, USA). Colonies were counted after 8–10 days.

Colony-forming unit spleen assay day 12
Bone marrow (1�105) cells from 8 to 10-week-old wild-type or
Foxo3�/� littermates or GFP-positive transduced cells were isolated
and intravenously injected into recipient C57BL6 mice (Charles
River Laboratory) previously subjected to 10 Gy irradiation.
Recipient spleens were excised 12 days later, fixed in Telleyesnicz-
ky’s solution and macroscopic spleen colonies were counted as
described (Till and Mc, 1961).

Flow cytometry and cell sorting
Antibody staining and flow cytometry analysis were previously
described (Marinkovic et al, 2007; Yalcin et al, 2008). For CMP
isolation (Lin� IL-7Ra� Sca-1� c-Kitþ FcgRlowCD34þ ) (Akashi
et al, 2000), cells were stained with anti-c-Kit (BD Biosciences),
anti-FcR (eBioscience) and anti-CD34 (eBioscience) antibodies
directly conjugated with fluorescein isothiocyanate, phycoerythrin
or allophycocyanin, and with biotinylated multi-lineage monoclonal
antibody cocktail (StemCell Technologies) as well as biotinylated
antibodies against IL-7R (eBioscience) and Sca-1 (BD Biosciences)
visualized with PECyc7-Streptavidin or Pacific Blue-Streptavidin.

To measure intracellular AKT phosphorylation, Lin� IL7-Ra�

Sca-1� c-Kitþ cells were fixed with fix/permeabilization buffer (BD
Biosciences) and incubated with 1:50 dilution of anti-pSer473 AKT
antibody (Cell Signaling Technology). To measure protein phos-
phorylation in response to Lnk expression, transduced cells were
starved in vitro in Iscove’s modified Dulbecco’s medium (IMDM)
with 0.1% FCS for 2 h, stimulated with IL-3 (10 ng/ml) and fixed,
and optimum phosphorylation was detected by flow cytometry (15
and 45 min for pmTOR/pS6 and pAKT, respectively). Cells were
incubated with 1:100 dilution of anti-pSer473 AKT, pSer2448 mTOR
and pSer235/236 S6 antibodies (Cell Signaling Technology).
Samples were washed and protein phosphorylation was analysed
in GFPþ -gated cells by flow cytometry.

Cell proliferation and apoptosis assays
Mice were injected intravenously with 2 mg of BrdU. At 19 h post
injection, bone marrow Lin� IL7Ra� Sca-1� c-Kitþ cells were fixed
and stained with anti-BrdU antibody (BD Biosciences) for flow
cytometric analysis of cell proliferation.

Freshly isolated Lin� IL7Ra� Sca-1� c-Kitþ cells were assayed
for annexin-V (BD Biosciences) binding to measure apoptotic cells.
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Cell cycle arrest
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AKT

Foxo3–/–Wild type

Cell survival
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Figure 10 Model for Foxo3 regulation of hematopoietic progenitor cell activity. In hematopoietic progenitors, cytokine receptor signalling
generates ROS that further activate receptor signalling (AKT/mTOR), leading to cell proliferation, increased production of ROS and ultimate
induction of Foxo3 nuclear localization once ROS are accumulated above certain threshold. Signalling is modulated by cytokine receptor
regulators including Lnk, a negative regulator. In Foxo3�/� hematopoietic progenitors, decreased expression of Lnk, associated with significant
increase in ROS accumulation, enhance cytokine-mediated signalling, leading to myeloproliferation.
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Measurement of intracellular ROS
ROS were measured as previously described (Marinkovic et al,
2007; Yalcin et al, 2008).

RNA isolation and QRT–PCR
Total RNA was isolated using RNeasy Mini Kit (Qiagen). First-strand
cDNA was synthesized using SuperScript (Invitrogen). Quantitative
RT–PCR was performed using SYBR Green JumpStart Taq ReadyMix
(Takara) in duplicates using ABI Prism 7900 HT Cycler (Applied
Biosystems). Gene-specific primers spanning intron–exon boundary
were designed by Primer Express 2.0 (ABI) and subjected to BLAST
analysis to ensure the primer specificity. The PCR cycle parameters
were as follows: 951C for 1000 followed by 45 cycles at 951C for 500,
601C for 3400 and 721C for 3000. Relative quantification was achieved
using the sequence detection system software (Applied Biosystems)
and a fractional cycle number at which threshold fluorescence was
obtained (threshold cycle, CT); for each analysis, comparative CT
method for quantification of the target genes relative to b-actin as
the reference was used. Results shown as fold change are relative to
wild type controls. Primer sequences are listed in Supplementary
Table 1.

Western blot analysis
Freshly isolated lineage-negative bone marrow cells were starved
in vitro for 2 h in IMDM with 0.1% FCS and then stimulated with
IL-3 (20 ng/ml) for the indicated time points. Cells were harvested
and lysates were prepared in 1� RIPA lysis buffer (20 mM sodium
phosphate, 300 mM sodium chloride, 4 mM EDTA) containing 2%
sodium deoxycholate, 2% NP-40, 0.2% SDS, 400mM sodium
orthovanadate, 0.2% b-mercaptoethanol, 2 mM PMSF and 100 mM
sodium fluoride and protease cocktail inhibitors (Roche). Samples
were run on SDS–PAGE, blotted and probed with following
antibodies at 1:1000 dilutions: anti-pSer473 AKT, anti-AKT, anti-
pThr389 S6Kinase, anti-S6Kinase, anti-pSer2448 mTOR, anti-mTOR
and anti-pTyr694 STAT5 (all from Cell Signaling Technology) and
anti-Lnk (M-20; Santa Cruz). Anti-pSer726 STAT5 (Upstate Bio-
technology) and anti-STAT5 (BD Biosciences) were used at final
concentrations of 1:500 and 1:200, respectively.

Histology
Spleen and liver tissues from 11-week-old wild-type or FoxO3�/�

littermates were collected and paraffin embedded after 10%
formalin fixation. Sections (8–10 mm) were stained with hematox-
ylin and eosin for histology analysis.

In vivo treatment with N-acetyl-L-cysteine or rapamycin
Mice received intraperitoneal administration of 100 mg/kg of body
weight NAC (Sigma, St. Louis, MO, USA) in PBS (pH 7.4) for the
indicated time period, as previously described (Yalcin et al, 2008).
Cultured cells were incubated with NAC (100 mM) for the indicated

time period. Rapamycin (Sigma) was administrated intraperitone-
ally (4 mg/kg in PBS containing 5% Tween 80, 5% PEG 400 and 4%
ethanol) for 5 days a week (Yilmaz et al, 2006).

For in vitro rapamycin treatment, total bone marrow cells
isolated from wild-type and Foxo3�/� mice were cultured with
rapamycin (final concentration 2 mM) or vehicle for 24 h after which
mRNA was isolated for QRT–PCR analysis.

Retroviral production and transduction of 5-FU-treated bone
marrow mononuclear cells
Retroviral supernatants were produced as previously described
(Zhao et al, 2006). Bone marrow mononuclear cells isolated from
mice treated 4 days previously with 5-FU (150 mg/kg, Sigma) were
pre-stimulated for 2 days in IMDM containing 15% heat-inactivated
FCS supplemented with IL-6 (10 ng/ml), IL-3 (6 ng/ml) and SCF
(100 ng/ml; PeproTech EC), after which cells were resuspended in
retroviral supernatants (multiplicity of infection of 10) for 2
consecutive days and plated on retronectin-coated dishes in
IMDM–15% FCS containing the same factors. At 48 h after
initiation, live GFP-positive cells were FACS sorted and used for
experiments.

Statistical analysis
The unpaired two-tail Student’s t-test was used for all experiments.
A P-value of o0.05 was considered to be significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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